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For fECI 0, II, the nth Bernstein polynomial is defined by

(I)

Generally, Bn(x) is a polynomial of exact degree n, although degeneracies
can occur. For example, iff itself is a polynomial of degree m, then B nU; x)
is also of degree m for all n)o m (although not equal to f(x) except in the
case m = I). This result follows easily from an alternate form of the
Bernstein polynomials II, p. 131, namely,

Here h = lin and L1~f(O) is the kth forward difference of J,

k . k )
L1U(O)=L1(L1~-1(0»= \' (-I); ( '. f((k-j)h).

; 0 J

(2 )

(3 )

If f(x) is a polynomial of degree m, then L1~f(O) = 0 for all n> m, so that
B n(f; x) is also of degree m, In this note we present a class of functions
which have a sequence of degenerate Bernstein polynomials, and show, in
addition, that surprising equalities occur for certain of these polynomials.

THEOREM. Let f(x) be a piecewise linear function with at most m - I
changes of slope, which can occur only at the points ilm, i = I, 2,.. " m _. l.
Then for all natural numbers m, Bmn, 1(f; x) is of degree mn and, moreover.
B mn + ,(f; x) = Bmn(f; x),
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I unll.
I). We

Proof By (2). Bmll(x)=~Z'''o(lkX', where (lk" ("~"),JU 0), h
and B mll + I(X) = \'Z'" r; I bkxk. where b,~. ('71\' 1),1~/(0). Ii (11117

will show that bk = (lk' k = 0, 1,.... 11111. and b"/lI' , = 0.

Case l. Suppose (I 1)11 i- I "k Iii, for some I 1.2.... " Ill, N\J\\
L1U(O) =. ,1(j~ Il(O)) = L1~ I((h) -1~ '((0) il(j~ '((11)111.1;, /(0))

Applying the technique iteratively. we obtain 1;,/(0) ~; Ii' ( l!i(

J;,.r((k 2 ))11), where ,1;,.r(x)=/(x -!-- II) 2f(x" II) (((X). In our case

h·· I /1111/. so that

k 'k 7. A 1
.J ~I(O) == \. (- I)' ( ~ ) /1' l ( ____":"_ .I I

0' -_ j h. 1111/ I .
Iii

Let's recall now that f is a piecewise linear function. and that the second

difference of a Iil1ear function is zero. Thus. the only terms in (4) that arc

different from zero arc those in which the points (A ))/17111.

(k I ))/mll and (k - j)/mll "straddle" one of the points i/1I1 at which

f(x) changes slope. Hence.

Now

= rf (,i~_I)
I ,11111.

= (Si I I S,)/II1I1.

where Si is the slope of/(x) on the interval IU 1)//ll.i/II1!. Thus.

(6)

We now pass to bk • As in the case of (I,. the difference .1;,)· (0) ean be

written as a linear combination of second differences. and once again many
of these terms are zero because of the special nature of f(x). Hence we arc

left with

, {\ I ,- I l/ k 2) j -'J' ( in/17,/(0)=='_(--1)' III I
\ k ill- I L II , 11111

I I

I

I

(k kill 2 2
ill

) ,J},f (
11111 +



DEGENERATE BERNSTEIN POLYNOMIALS

A calculation shows that

, (il1- I ') (m- i)
iJ;f -- =----. (S I-Si)'

I ml1 + I, m(1I111 + I ) , .

and

From (7). (8) and (9) we obtain

iJ~f(O) = '\} (_I)k ill 1 r(.. __k_ - 2 .) (111 _ i) _ ( k ~ 2 .,) ij
icit .k in- I k - Ifl -- 2

X (Si + I - S i) .

m(mn + I)

Another calculation yields
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(8)

(9 )

( 10)

(
k -- 2·) (' k - 2 ') (k 2 ) (' mn -j- I -. k ')(m - i) - i = ------- .

k - il1 - I k - ill -- 2 , k - il1 - I . 11

(II)

so that, from (10) and (II), we have

k-2 ')(I11I1+I-k)
----- (S, 1- S,).

ill - I fIll1(lI1n + I) ,

(12 )

Now (mll/I)(II1I1+ l-k)/(II1I1+ 1)=(I)~I1). so that bk=Ok' Note. also. from
(12), that if k = fIln + I. then bk = O.

Case 2. Suppose k = (1- I )11 + I for some I = I. 2" .. , m.
In this case ai, is unchanged from Case I. but in bk the term involving

j U((l- I )n/(11111 + I)) is missing. with the remaining terms unchanged. So
the only term that must be investigated is that involving S, - S / I' Here we
find that the coefficient of this term in Ok is ("~")( l(mll). while in bk it is

(
I11n-t I) (m - (1--~ (ml1~__I_)!_ ~~J'--_l)~

k .111(11111+1) k!(lI1n+I--k)! 111 (mil + I)

(mn)! (111 - (l I))
-_.-----~-~..- -_._---,.-----

k!(11111 + 1-· k)! 111

(.
//111) ....._(~~~~_l))_
k m( mil + 1 .. k)
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(.
mn)· ~1 I (m - (1- I )nj
k mn l mn + 1 - k

(
.

.mn) _1_ [ mn - (1- 1)n

k . mn mn + 1- k

= (mil ) ~l I mn - (I - 1)n I (mn) 1
k mil l mn - (I ~ l)n =. k ~nl1 .

Therefore, bk = G k in this case as well.
The only remaining case is k = 0, which is easily disposed of since

bo = Go = 1(0). The proof is now complete.
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