Degenerate Bernstein Polynomials

David Freedman and Eli Passow*
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122, U.S.A.
Communicated by E. W. Cheney
Received August 5, 1982

For $f \in C|0,1|$, the nth Bernstein polynomial is defined by

$$
\begin{equation*}
B_{n}(f ; x)=B_{n}(x)=\sum_{k-0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n} \tag{1}
\end{equation*}
$$

Generally, $B_{n}(x)$ is a polynomial of exact degree n, although degeneracies can occur. For example, if f itself is a polynomial of degree m, then $B_{n}(f ; x)$ is also of degree m for all $n \geqslant m$ (although not cqual to $f(x)$ except in the case $m=1$). This result follows easily from an alternate form of the Bernstein polynomials $\mid 1$, p. 13|, namely,

$$
\begin{equation*}
B_{n}(f ; x)=\sum_{k-0}^{n}\binom{n}{k} \Delta_{h}^{k} f(0) x^{k} \tag{2}
\end{equation*}
$$

Here $h=1 / n$ and $\Delta_{h}^{k} f(0)$ is the k th forward difference of f,

$$
\begin{equation*}
\Delta_{h}^{k} f(0)=\Delta\left(\Delta_{h}^{k-1} f(0)\right)=\varliminf_{j=0}^{k}(-1)^{j}\binom{k}{j} f((k-j) h) . \tag{3}
\end{equation*}
$$

If $f(x)$ is a polynomial of degree m, then $\Delta_{h}^{k} f(0)=0$ for all $n>m$, so that $B_{n}(f, x)$ is also of degree m. In this note we present a class of functions which have a sequence of degenerate Bernstein polynomials, and show, in addition, that surprising equalities occur for certain of these polynomials.

Theorem. Let $f(x)$ be a piecewise linear function with at most $m-1$ changes of slope, which can occur only at the points $i / m, i=1,2, \ldots, m-1$. Then for all natural numbers $m, B_{m+1}(f ; x)$ is of degree $m n$ and, moreoter. $B_{m n+1}(f ; x)=B_{m n}(f ; x)$.

[^0]Proof. By (2), $B_{m n}(x)=\sum_{k}^{m n}{ }_{11} a_{k} x^{h}$, where $a_{h} \cdots\left(\begin{array}{c}\left.m{ }_{k}^{n}\right) \\ k\end{array} A_{k}^{k} f(0), h \cdots 1 / m n\right.$. and $B_{m n+1}(x)=\sum_{k=0}^{m n} \cdot b_{k} \cdot x^{h}$. where $b_{k}=\left(m m!A_{k}^{h} f(0), h=1(m n-1)\right.$. Wc will show that $b_{k}=a_{k}, k=0, I, \ldots . m n$, and $b_{m n, 1}=0$.

Case 1. Suppose $(1-1) n+1<k \leqslant / n$, for some $1-1.2 \ldots \ldots$. Nou
 Applying the technique iteratively. we obtain $A_{h}^{k} f^{\prime}(0)=L^{2}$,, $1 l^{k}$ " $A_{h}^{2} f((k-2 \quad j) h)$, where $A_{h}^{2} f(x)=f(x+h)-2 f(x+h)+f(x)$. In our case $h=1 / m n$. so that

$$
\begin{equation*}
A_{n}^{k} f(0)=\frac{k}{-10}(-1)^{j}\binom{k-2}{j} A_{n}^{\frac{2}{n}} f\binom{k-2}{m n} \tag{141}
\end{equation*}
$$

Let's recall now that f is a piecewise linear function, and that the second difference of a linear function is zero. Thus, the only terms in (4) that are different from cero are those in which the points $(k \quad 2 \cdots j) / m m$. $(k-1 \cdots j) / m n$ and $(k-j) / m n$ "straddle" one of the points i / m at which $f(x)$ changes slope. Hence,

$$
\begin{equation*}
J_{n}^{k} f(0)=\frac{1}{i}(-1)^{k-i n} 1\binom{k-2}{k-i n \cdots 1} 1_{h}^{\prime} f\left(\frac{i n}{m n} 1\right) . \tag{5}
\end{equation*}
$$

Now

$$
\begin{aligned}
A_{h}^{2} f\left(\frac{i n \cdots 1}{m n}\right) & =f\left(\frac{i n+1}{m n}\right)-2 f\left(\frac{i n}{m n}\right)+f\left(\frac{i n-1}{m n}\right) \\
& =\left|f\left(\frac{i n+1}{m n}\right) \cdots\left(\frac{i n}{m n}\right)\right| \cdots\left|f\left(\frac{i n}{m n}\right)-f\left(\frac{i n}{m n}\right)\right| \\
& =\left(S_{i+1}-S_{i}\right) / m n .
\end{aligned}
$$

where S_{i} is the slope of $f(x)$ on the interval $|(i-1) / m, i / m|$. Thus.

$$
a_{k}=\binom{m n}{k} \sum_{i 1}^{1}(\cdots 1)^{k} \text { in i }\left(\begin{array}{cc}
k-2 \tag{6}\\
k-i n & 1
\end{array}\right) \frac{\left(S_{i+1} S_{i}\right)}{m n} .
$$

We now pass to b_{k}. As in the case of a_{k}. the difference $A_{n}^{k} f(0)$ can be written as a linear combination of second differences. and once again many of these terms are zero because of the special nature of $f(x)$. Hence we are left with

$$
\begin{aligned}
A_{n}^{k} f(0)= & \sum_{-1}^{1}(-1)^{k} \text { in }
\end{aligned}\left|\left[\begin{array}{c}
k-2 \\
k \cdots i n-1
\end{array}\right) A_{n}^{2} f\left(\begin{array}{cc}
i n & 1 \\
m n & 1
\end{array}\right)\right|
$$

A calculation shows that

$$
\begin{equation*}
\Delta_{h}^{2} f\left(\frac{i n-1}{m n+1}\right)=\frac{(m-i)}{m(m n+1)}\left(S_{i, 1}-S_{i}\right) . \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{h}^{2} f\left(\frac{i n}{m n+1}\right)=\frac{i}{m(m n+1)}\left(S_{i, 1}, \quad S_{i}\right) . \tag{9}
\end{equation*}
$$

From (7), (8) and (9) we obtain

$$
\begin{align*}
\mathcal{A}_{h}^{k} f(0)= & \stackrel{\vdots}{i-1}(-1)^{k} \quad i n \quad\left[\binom{k-2}{k-i n-1}(m-i)-\binom{k-2}{k-i n-2} i\right] \\
& \times \frac{\left(S_{i+1}-S_{i}\right)}{m(m n+1)} . \tag{10}
\end{align*}
$$

Another calculation yields

$$
\begin{equation*}
\binom{k-2}{k-i n-1}(m-i)-\binom{k-2}{k-i n-2} i=\binom{k-2}{k-i n-1}\left(\frac{m n+1-k}{n}\right) \tag{11}
\end{equation*}
$$

so that, from (10) and (11), we have

$$
\begin{equation*}
b_{k}=\binom{m n+1}{k} \bigcup_{i-1}^{1}(-1)^{k-i n} 1\binom{k-2}{k \cdots i n-1} \frac{(m n+1-k)}{m n(m n+1)}\left(S_{i, 1}-S_{i}\right) \tag{12}
\end{equation*}
$$

Now $\binom{m n+1}{k}(m n+1-k) /(m n+1)=\binom{m n}{k}$. so that $b_{k}=a_{k}$. Note. also. from (12), that if $k=m n+1$, then $b_{k}=0$.

Case 2. Suppose $k=(l-1) m+1$ for some $l=1.2 \ldots . m$.
In this case a_{k} is unchanged from Case 1 . but in b_{k} the term involving $A_{h}^{2} f((l-1) n /(m n+1))$ is missing, with the remaining terms unchanged. So the only term that must be investigated is that involving $S_{l}-S_{l}$. Here we find that the coefficient of this term in a_{k} is $\binom{m n}{k}(1 / m n)$. while in b_{k} it is

$$
\begin{aligned}
&\binom{m n+1}{k} \frac{(m-(l-1))}{m(m n+1)}=\frac{(m n+1)!}{k!(m n+1-k)!}-(m-(l-1)! \\
& m(m n+1) \\
&=\frac{(m n)!}{k!(m n+1-k)!} \frac{(m-(l-1))}{m} \\
&=\binom{m n}{k} \frac{(m-(l-1))}{m(m n+1 \cdots k)}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{m n}{k} \frac{1}{m n}\left[\frac{(m-(l-1) n}{m n+1-k}\right] \\
& =\binom{m n}{k} \frac{1}{m n}\left\lfloor\left.\frac{m n-(l-1) n}{m n+1-k} \right\rvert\,\right. \\
& =\binom{m n}{k} \frac{1}{m n}\left\lfloor\frac{m n-(l-1) n}{m n-(l-1) n} \left\lvert\,=\binom{m n}{k} \frac{1}{m n} .\right.\right.
\end{aligned}
$$

Therefore, $b_{k}=a_{k}$ in this case as well.
The only remaining case is $k=0$, which is easily disposed of since $b_{0}=a_{0}=f(0)$. The proof is now complete.

Referfnce

1. G. G. Lorentz. "Bernstein Polynomials." Univ. of Toronto Press, Toronto, 1453

[^0]: * Supported in part by a Temple University Grant-in-Aid of Research.

